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Abstract. The method of non-equilibrium statistical operators developed by Zubarev has 
been extended to study transient hot-electron transport in many-valley semiconductors. A 
set of coupled evolution equations with memory effect are derived to determine the time- 
dependent drift velocities u,(f) ,  hot-electron temperatures T*(t) and populations A',(?) of 
various valleys under time-dependent electric fields. In the classical approximation these 
non-linear differential equations are applied to study the transient transport of GaAs with 
a T-L-X band structure under electric fields with several configurations: 

(i) time-step; 
(ii) rectangular time pulse; 
(iii) high-frequency sinusoid. 

Using the same set of parameters, our calculated results for ud(t)  = Z,N,(f)u,(t)/Zfl,(f) 
compare quantitatively with those in Monte Carlo calculations. 

1. Introduction 

Current interest in studying the transport properties of conducting material with an ultra- 
small size has been stimulated with the development of submicrometre semiconductor 
devices (for a general review, see [l]). The features characterising carrier transport in 
semiconductors for a submicrometre scale can be very different from those obtained in 
the usual steady-state transport. These new features occur either when the semi- 
conductor sample is submitted to a very fast time variation in the electric field or when 
the electric field is characterised by a small spatial scale. For an ultra-small sample the 
drift velocity u d  is time dependent and the measured current density Neud(t) depends on 
the distance between the-source and the drain. This transport property is very important 
and will govern the behaviour of a device. In the present paper, we shall study the 
transient drift velocity of electrons by submitting a GaAs sample to a time step or a time 
pulse configuration of electric field, or to a high-frequency sinusoidal electric field 
superimposed on an applied steady field. 

Although several classical and quantum mechanical formulations for high-field tran- 
sient transport have been proposed, in realistic calculation, one has to employ methods 
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based on either the phenomenological Boltzmann equation in the relaxation time 
approximation [2] or the Monte Carlo simulation [3,4]. Since an ensemble of electrons 
in a strong electric field is far from the equilibrium state, the method of non-equilibrium 
statistical operator (NSO) developed in [5]  seems to be a useful tool for studying hot- 
electron transport in high electric fields. We have generalised this method to the steady- 
state hot-electron transport for both simple-band [6] and many-valley [7] semicon- 
ductors, as well as to the transient hot-electron transport for a single-valley semi- 
conductor [8]. In this paper, we shall extend the NSO method to the study of transient 
hot-electron transport of many-valley semiconductors. Considering n-type GaAs with 
a T-L-X valley ordering, we shall derive a set of non-linear time-differential equations 
for momenta, energies and populations of various valleys, from which the drift velocities 
un(t) ,  the electron temperatures T,(t) and the populations N,(y) (a = r, L, X) can be 
determined self-consistently as functions of time t and electric field E(t).  Using these 
equations, we shall calculate transient current waveform Z(t) = Neud(t) with ud = 
Z,N,(t)u,(t)/N in various time-dependent electric fields. We show that the results 
obtained are in reasonable agreement with those of the Monte Carlo simulations. 

In 0 2 the Hamiltonian of a many-valley electron-phonon system in a time-dependent 
electric field is described. The NSO for a many-valley system is introduced to perform 
statistical averages over the centre-of-mass momenta, Hamiltonians and population 
operators in the non-equilibrium state. In 0 3 a set of evolution equations with memory 
effect are derived to calculate the drift velocities, electron temperatures and populations 
of various valleys. In 0 4 the explicit expressions for these non-linear differential 
equations in the classical approximation are given. In 0 5, our formulation is applied to 
calculate the transient hot-electron transport in GaAs with a T-L-X valley structure in 
several time-dependent electric fields. The results are discussed and compared with 
those of the Monte Carlo calculations. The final section, 0 6, contains a brief summary. 

2. The non-equilibrium statistical operator method 

We consider an ensemble of electrons in a semiconductor with an n-valley band structure 
in a time-dependent electric field E ( [ ) .  The electrons are accelerated by the applied 
electric field and scattered by phonons, forming a transient flow of current. The total 
Hamiltonian of the system can be written in terms of the centre-of-mass variables and 
electron variables in the relative coordinates [9]: 

where 

P’, 
N,eE - R ,  

n 
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with 

Here H, is the centre-of-mass part of the Hamiltonian. P, and R ,  are the momentum 
and coordinate of the centre of mass respectively, for the ath valley, N ,  is the population 
of electrons for the ath valley and m, is the single-electron effective mass. He,  is the 
free-electron Hamiltonian in the relative coordinate of the ath valley, and Hph is the 
phonon Hamiltonian. He-ph stands for the intra-valley (a = y )  and inter-valley (a # 
y )  electron-phonon interaction terms with M,,(q, A) as the electron-phonon matrix 
elements. The electron-impurity and electron-electron interactions can easily be 
included in the present method [7], for simplicity, they are not considered here. The 
above Hamiltonian features the separations of H, from HeW. The advantage of such 
variable separations is that the current ((P,) # 0) is carried only by the centre of mass, 
while electrons in the relative coordinates, which constitute n many-body systems, are 
not directly influenced by the electric field and do not carry current (Xl(Pmi) = 0). Since 
our approach depends on the separations of the centre of mass from the relative motions 
of electrons, the valleys of electrons must be assumed to be parabolic (isotropic or 
anisotropic). 

The current densityis defined as I ( t )  = Neu,(t) with ud(t) = X,n,(t)u,(t), where u,(t) 
is the drift velocity of electronsfor the athvalley, andn,(t) = N(t)/Nis the corresponding 
fraction of electron population. In order to study the transient behaviour of the current, 
one needs to investigate the equations of motion for operators P,, He,, N ,  (a= 
1 ,2 ,  . . . , n) and Hph. According to the formula P = -i[PH], one obtains 

The next step is to take the statistical average of operator Q (Q stands for Pax, I&,, 
i, and f i p h )  with respect to a time-dependent density matrix p(t): 

Following to [ 5 ]  and [8], we can write the NSO in the following form: 

0 
p(t) = exp ( - s ( t ,  0) + 1 dt' exp(st') i(t + t ' ,  t') 

- m  
(4) 
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with K ,  = [He, - p,(t)N,]. HereH,,, N,andHph are chosen as basis dynamicquantities, 
and their thermodynamically conjugate forces are P,(t), P,(t)p,(t) and P with Pa(t) and 
p,(t) as theinverse oftemperature andchemical potential forthe athvalley, respectively, 
and P the inverse of temperature for the phonon system. From equation ( 5 ) ,  we find that 

n 

i( t ,  t’)  = exp(iHt’) i ( t ,  0) exp(-iHt’) (7) 

where ( K a ) j  = Tr[K,pl(t)] with p l ( t )  = exp[-s(t, O)] as the time-dependent quasi- 
equilibrium statistical operator corresponding to the isolated carrier distribution without 
electron-phonon interaction at the time t. It has been shown [5] that p(t) defined in 
equation (4) satisfies Liouville’s equation in the limit of E + 0 and can be used to describe 
the non-equilibrium transport process. Since the energy exchange rate between the 
electron and phonon systems is generally assumed to be small in hot-electron transport 
theory, we shall use the following perturbative expression for p(t) to lowest order in 
He-ph [6, 101: 

0 

p(t) = p l ( t )  [ 1 + I dt’ exp(et’) Io’ d t  (5 a= 1 P,(t + t’)ka(t, i t )  (8) 
--P 

+ Pkph(&’, i t ) )  1 
with 

kLY(tf , i t )  = exp[- z s ( t ,~ ) l exp( i~ t ’ )  [kea + p , ( t +  t’>N,lexp(-i~t’)exp[ts(t,~)l (9) 

(10) kph(t ,  i t )  = exp[ - m(t,  011 exp(iHt’) kphexp(-iHtr) exp[ts(t, o)].  
In deriving the above perturbative expression for p(t), we have neglected the last term 
on the right-hand side of equation (6) which is of the second order of magnitude in 
He-ph [8]. This corresponds to neglecting energy and population fluctuations in many- 
electron systems. Substituting the expressions for He,, N, and kph into (8), using the 
relations 
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From equations (3) and (8) the statistical average of a dynamic variable 52 at time t can 
be written as 

(QY = (52) ;  + Tr{Q[p(t) - Pl(t>l). (14) 

In 0 3, we shall apply equations (12) and (14) to derive the evolution equations for u,(t), 
T,(t) and n,(t). 

3. The evolution equations 

Substituting equation (2) for P ,  into equation (14) and using the relations 

(15) 
(PebqA (t’)Pwy,kq (t’)): {exp[-Aay(t)l - l )  = ( [ b q A  (l’)Pocy,kq (l’), @@I); 
(P,bZ,A (t’)Pny,kq (t’)); {exp[-B,y(t)l - 1) = ([b+,A(t’)P,,,k, k 1 ) i  
with [C, D] = CD - DC, we obtain the average value of the time derivative of operator 
p*x as 

where AiaY(k, q, A ,  t - t’) and Az,(k, q ,  A, t - t’) are the retarded Green functions 
which are respectively defined as 

A,cry(k, 4 ,  A? t - t’) = - t’)([bqAP,y,kq’ biA(t’ - t)P:,kq(t’ - t)]): 
(17) 

Almy(k,  4, A, t - t’) = -ie(t - t’)([bf,AP,,k,, b-,n(t’ - t)P:,kq(t’ - t)])? 

and Eay(t, t’) is defined as 
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Similarly, we can obtain the average values of the time derivations of H ,  and N,: 

Equation (16), (19) and (20) are the main formulae in this paper. With the relations 
(k,) = N,m,(du,/dt), (keJ = N,c,(dT,/dT) + T&,(dN,/dt) and (fie) = dN,/dt (ce = 
ikB is the single-electron specific heat), these equations form a complete set of evolution 
equations to determine the transient value of the drift velocities U,, effective tem- 
peratures T,  and populations N, of electrons for various valleys in a time-dependent 
electric field. These evolution equations derived above are non-Boltzmann type and go 
beyond the semi-classical approximation because of the memory effect included in them. 

4. Non-linear equations in the classical approximation 

In equations (16), (19) and (20) the memory effect is included in the factors Apy(t’) and 
B,,(t’) as well as Eay(t, t’). It has been shown [8] that for single-valley case the transient 
currents obtained by the Langevin-type equations with memory and without memory 
are almost identical with each other in electric fields of moderate strengths. This result 
means that in such fields the memory effect is not important and can be neglected, 
We expect that this conclusion is still valid for many-valley systems. The classical 
approximation without a memory effect has been used extensively for studying the 
transient behaviour of laser-induced hot electrons in GaAs [ll, 121. Omitting memory 
effects from the evolution equations (16), (19) and (20) is equivalent to the following 
approximation: 

~ ( t ’ ) / ~ ( t )  -- ~ ( t ’ ) / ~ ( t )  -- 1 

E a y ( t ,  t’) -- exp{i[(kx + 4 x ) u a ( t )  - k,uy(t)l(t - t’>l>. 

and 

(21) 
Under this approximation the integrals overt‘ in equations (16), (19) and (20) can easily 
be performed. In terms of the standard Green function technique [13], we obtain a set 
of classical equations which can easily be employed to calculate the transient hot-electron 
transport for a many-valley semiconductor: 
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where A,,(k,q,A,  U,,) is the imaginary part of the Fourier transform of 
[A;,,(k, 4 ,  A ,  t - t ' )  + A:,,(k, 4 ,  A ,  t - t ' ) ] .  Its expression [14] is 

A,,(k 4 ,  A, U,,) = 2d,n,,(k 4 ,  %,){n(QqA/T) - n[(w,, + Q q * ) P e l }  

A Y y ( k 7  4 ,  A, U,,) = 2d,d,m,,(k, 4 ,  may - Qq*)[n(Qq,/T) 

(23) 

- 4 E , , k + q / T ,  - E y k / T y ) l  

+ n,,@, 4 ,  U,, + Q*AMQqA/T)  - 4E,k/T, - E,,k+,/T~Y>l> (24) 

(25) 

(26) 

with 

n,,(k, 47 0)  = - 2 n l f ( E , , k + q / T ~ )  - f ( S y k / T y ) l G ( E a , k t q  - &yk + U >  

U,, = (k ,  + q x ) u ,  - KxUy  + m,u2,/2 - m,u2,/2 

wheref(Eek/T,) = l/[exp(emk - p,)/T,) + 11 is the Fermi-Dirac distribution function 
with E,k = &,k - y,, and n(x)  = l/[exp(x) -11 is the Bose-Einstein distribution 
function. In deriving equations (23)-(26), we have assumed that there are d, equivalent 
valleys for the type-a carriers, and d, equivalent valleys for the type-y carriers. For 
GaAs with a T-L-X band structure, the set of equations in (22) is composed of eight 
non-linear differential equations (a = r, L, X, with Nr + N L  + Nx = N>. It is well 
known that, for many-valley semiconductors, the carriers of various valleys in thermal 
equilibrium obey the Maxwell-Boltzmann distribution at room temperature. In such a 

naY(k, q ,  U )  and A,(k, q ,  U,,) reduce to the expressions which have already been given 
in the Appendix of [ 141. 

It is interesting to compare the evolution equations obtained above with those from 
the approximate treatments of the Boltzmann equation. Although the present method 
is non-Boltzmann, the results seem to be close to those obtained from the drifted 
Maxwellian approximation in solving the Boltzmann equation. A detailed discussion of 
this point has been given in [15].  As pointed out in [15], the carrier distribution function 
in the present method is not a drifted Maxwellian type and the exact carrier distribution 
function is not needed in calculating u d  as a function of E. 

casef(E*k/T,) = exP[-(&ak - P,)/T,I and exp(y,/T,) = (N,/2d,) (2Jc/m,TJ3'*, so that 

5. Numerical results 

In this section, we apply those equations in (22) obtained above to calculate the drift 
velocity of carriers in an n-type GaAs sample in time-dependent electric fields at room 
temperature. For an n-type GaAs semiconductor, we consider the complexity of the 
conducting band structure by assuming that the system is composed of three parabolic 
valleys (one r valley, four equivalent L valleys and three equivalent X valleys). Carriers 
in different valleys have different effective masses, drift velocities and electron 
temperatures. Scatterings due to acoustic, polar optic and non-polar optic phonons are 
considered. For each valley the acoustic electron-phonon interaction matrix element is 
taken to be 

lM,&, A I 2  = E2,4/2dus. (27) 
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For the r valley the polar optic electron-phonon interaction matrix element is taken to 
be 

For L valleys the non-polar optic electron-phonon matrix element is 

l M L h  A l l 2  = Dt,/2dQo,. (28) 
Between both equivalent and non-equivalent valleys, the non-polar optic electron- 
phonon interaction matrix element is 

IM,,(q, A l l 2  = D2,,/2dQ. (30) 
The definitions of the parameters which appear in these electron-phonon interaction 
matrices are explained in table 1. For comparison, we use the same values for all 
parameters in GaAs as those in the Monte Carlo method (see table 8.2 of [l]), except 
that the non-parabolicity effect is not considered, in calculating the transient v,(t), T,(t) 
and N,(t) for various valleys. 

From equation (22), we first calculate the transient drift velocity in an external 
electric field with a time step configuration ( E  = 0 for t < 0, and E = 5 ,  15,40 kV cm-' 
for t 3 0). The drift velocity as a function of time at T = 300 K is shown in figure 1. The 
time dependences of the mean velocity, temperature and the fraction of carriers in the 
r valley at E = 15 kV cm-l are plotted in figure 2. The essential feature of the transient 
velocity is the overshoot behaviour. Owing to the inter-valley scattering in a many-valley 
system the overshoot effect is stronger than that in single-valley case [8]. As shown in 
figure 1, the higher the field is, the stronger the overshoot effect. Our calculated results 
for E = 40 kV cm-l after t = 0 is very close to that of the Monte Carlo calculation which 
is shown in figure 8.4 of [l] .  The overshoot effect can be understood in view of the 

Table 1. The parameters of n-type GaAs. 

Symbol Parameter (units) Value 

d Density (g ~ m - ~ )  5.36 

K Static dielectric constant 12.90 
K, Optical dielectric constant 10.92 
QLO Longitudinal optical phonon energy (eV) 0.03536 

m,/mo Effective mass 0.063 0.222 0.58 
E d  Energy band gap (eV) (relative to valence band) 1.439 1.769 1.961 
E, Acoustic deformation potential (eV) 7.0 9.2 9.27 

D L L  Optical deformation potential (lo9 eV cm-') - 0.3 
QOP 

De@ 

us Velocity of sound (cm s-l) 5.24 x 105 

r(ooo) L(111) X(100) 

Optical phonon energy (mev) 0.0 34.3 0.0 

Inter-valley coupling constant (io9 eV cm-') 
- 

from 0 1 1 
from L 1 1 0.5 
from X 1 0.5 0.7 

from r 0 27.8 29.9 
from L 27.8 29.0 29.3 
from X 29.9 29.3 29.9 

Q Inter-valley phonon energy (mev) 

d, Number of equivalent valleys 1 4 3 
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Figure 1. Transient drift velocity u d ( t )  against time 
when a time step of the electric field is applied to 
a GaAs sample at T = 300 K: curve A,  calculated 
results for E = 40 kV cm-'; curve B, calculated 
results for 15 kV cm-'; curve C, calculated results 
for 5 kV cm-'. Comparison between curve A and 
the results obtained in [l] with a Monte Carlo 
procedure (0) is shown in the inset. 

0 1 2 3  
t (DS) 

Figure 2. Mean velocity ur(t )  (-), temperature 
ratio T,(t)/T (---) and fraction nr(t)  (. . . . .) of 
carriers in the r valley against time when a time 
step of the electric field ( E  = 15 kV cm-I) is 
applied to a GaAs sample at T = 300 K. 

disparity of the relaxation times for momentum, energy and carrier transfer. Since the 
momentum relaxation time is shorter than the energy and population relaxation times, 
as shown in figure 2, in the first 0.3 ps after the application of a constant electric field, 
while most of the carriers still stay in the r valley and the carrier temperature increases 
slowly, the mean velocity of carriers in the r valley increases rapidly, causing the 
overshoot behaviour. After about 0.3 ps has passed, the inter-valley scattering and hot- 
electron effect begin to play a leading role. 

(i) Many carriers in the r valley with higher mean velocity transit to the satellite 
valleys (L and X) with lower velocities. 

(ii) The drift velocities of various valleys decrease with the increase in hot-carrier 
temperatures. 

Thus, the total drift velocity first decreases rapidly and then gradually reaches its 
steady-state value. In small devices with high operating frequencies an interesting 
problem is research on the optimum electric field configuration which make electrons 
go as fast as possible. By using the simple relation 

s = lo' vd(t)  dt 

the average distances travelled by the carriers over a time tcan be obtained and is shown 
in figure 3. For a GaAs short channel field-effect transistor (FET), the separation between 
source and drain is in the micrometre range; the cold electrons injected at the source 
may never reach their steady-state velocity before being collected at the drain but travel 
at a overshoot velocity ud(t). From figure 3 ,  it seems that in small-size devices (feature 
sizes in the range 0.1-0.5 pm) the optimised field for obtaining the maximum distance 
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of high-velocity propagation depends on the overshoot velocity rather than the steady- 
state velocity. 

Next we calculate the transient drift velocity when a time pulse of electric field is 
applied to a GaAs sample. The calculated result is shown by the full curve in figure 4, 
and that of the Monte Carlo calculation by the dotted curve. Both calculated results of 
the two methods are in good agreement with each other except for some discrepancies 
near state C and D. Both overshoot and undershoot effects are obtained. To clarify the 
reason for producing both overshoot and undershoot phenomena, the fraction of carriers 
in the r valley is plotted by the broken curve in figure 4. State A is the transient drift 
velocity in a time step of the field ( E  = 0 kV cm-' for t < 0 ps and E = 2kV cm-l for 
2 ps > t > 0 ps). Before t = 2 ps, it has reached the steady-state value of ud = 
1.48 X 10' cm s-'. State B refers to a few tenths of a picosecond after the application of 
the high-electric-field pulse ( E  = 20 kV cm-'). The drift velocity increase linearly with 
time and has a strong overshoot effect as discussed above. State C refers to 1 ps after the 
application of the pulse; although the electric field remains very high, the transient drift 
velocity U d ( t )  = Z,u,(t)n,(t) decreases quickly because a great number of carriers are 
scattered into the L and X valleys from the r valley, and the transient velocity u,(t) for 
various valleys drops quickly and develops the lower steady-state values. State D refers 
to a few tenths of a picosecond after the applied electric field Ereturns to 2 kV cm-l. At 
this moment, while the instantaneous energies of various valleys have not yet been 
reduced and the population in the r valley still remains of very small value, the mean 
velocities in various valleys decrease quickly owing to the low value of the electric field, 
Therefore, there is a drastic decrease in the total drift velocity. Such a phenomenon is 
called the undershoot velocity effect. With increasing time, most carriers will return to 
the r valley, Tr will decrease, and the drift velocity u d  will increase and tend towards the 
steady-state value corresponding to E = 2 kV cm-'. Our calculated values for ud(t) near 
state C are higher than those of the Monte Carlo calculation (see figure 8.8 in [1]> where 
it is claimed that there is undershoot phenomenon at state C due to the Rees effect. In 

6 

0.6 t -I 

0 0.5 1 .o 1.5 

t ips1 

Figure 3. Average distances travelled by the car- 
riers over a time t when a time step of the electric 
field is applied to a GaAs sample at T = 300 K: 
curve A, E=40kVcm- ' ;  curve B,  E =  
15 kV cm-'; curve C, E = 5 kV cm-I. 

0 4 0 

f (psi 

Figure 4. Transient drift velocity ud(t )  (-) and 
fraction nr(t) (---) of carriers in the valley 
against time when a time pulse of electric field is 
applied to a GaAs sample at T =  300K; ....., 
Monte Carlo calculation [l]. 
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our opinion the transient behaviour of the drift velocity near state C before t = 4 ps in a 
time pulse electric field should be same as that in a time step field because different 
configurations of the fields after t = 4 ps cannot affect the transient drift velocity before 
t = 4ps. It is inconsistent to assert that the undershoot phenomenon shows up at state C 
with a time pulse field (E= 20 kV cm-') from the Monte Carlo calculation in figure 4, 
while the transient drift velocity in a time step field with E = 208(t) kV cm-' has no 
undershoot effect from both our and Monte Carlo results. Near state D the undershoot 
effect in our calculation is slightly weaker than that in the Monte Carlo calculation. The 
origin of this discrepancy is not clear. The undershoot phenomenon near state D is called 
the Rees effect. This effect was explained in [ 16, 171, 

Finally we study the time responses of the drift velocity for a long sample submitted 
to a high-frequency sinusoidal electric field superimposed to an applied steady field: 
E = Eo + E l  cos(wt) with Eo = 18 kV cm-', El = 14 kV cm-', and f = 100 GHz. The 
calculated result for the time-dependent drift velocity waveform is shown by the full 
curve in figure 5(a) ,  where a stable pulse current waveform with a time delay has been 
obtained. In order to show the transient transport behaviour in a high-frequency field, 
the steady-state values of the drift velocities in the same fields are plotted as the broken 
curve. It is easily seen that for the first half-period ( 5  ps > t > 0 ps) the calculated drift 
velocities are lower than their corresponding steady-state ones owing to the undershoot 
effect in a field whose strength decreases with time, and for the last half-period 
(10 ps > t > 5 ps) the overshoot behaviour dominates the drift velocity waveform in 
a increasing field with time. Figure 5(b)  gives the time-varying mean velocities and 
populations of electrons for various valleys. From that both the undershoot and the 

2 

4 1.0 

\ .---- "U Figure 5. (a) Drift velocity ud( t )  against time when 
auniformelectricfield ( E  = EO + El C O S ( ~ ~ )  with 
Eo = 18 kV cm-I, El = 14 kV cm-' and f = 
100 GHz) is applied to a GaAs sample at T = 
300 K. ---. steady-state drift velocity for the cor- 
responding electric fields; . . . . . , electric field 
strength waveform. (b )  Corresponding mean vel- 

0 4 8 ocities U,([) and fractions n,(r) of carriers, where 
(Y = r, L, X, against time. 

- -. / ., 

f Ips1 
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overshoot effects which dominate the current waveform can be understood, the peak of 
ud(t) corresponds to a high mean velocity U y  and a large population nr of electrons at the 

valley, and the valley of Ud(t) near t = 5 ps is due to the minimum mean velocities of 
electrons for various valleys. 

6. Conclusion 

We have studied the transient hot-electron transport in many-valley semiconductors by 
employing the method of the NSO. A set of coupled evolution equations with memory 
effect are derived to determine the time-dependent drift velocity. In the classical approxi- 
mation, non-linear differential equations for u,(t), T,(t) and n,(t) in a numerically 
calculable form are obtained. By using the same parameters as those in the Monte 
Carlo simulation, the time-dependent drift velocity, hot-electron temperatures and 
populations of carriers are calculated from these differential equations when the sample 
is put in various time-dependent electric fields. The results obtained are comparable 
with those of Monte Carlo calculations, but the mathematical structure of the present 
method is quite simple and the required computational effort isminor, a set of differential 
equations being solved on a Micro-VAX I1 computer. Furthermore, the physical origin 
of both overshoot and undershoot behaviours which govern the transient transport in 
the small region of semiconductor devices can be understood in terms of the hot-electron 
effect and inter-valley scattering in a many-valley system. Using the present method, we 
can easily study transient transport property in many-valley semiconductors within any 
shape of time-dependent electric field. 
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